Copied to
clipboard

G = C32:3SD32order 288 = 25·32

2nd semidirect product of C32 and SD32 acting via SD32/C8=C22

metabelian, supersoluble, monomial

Aliases: D24.1S3, C6.13D24, C24.16D6, C32:3SD32, C12.10D12, C8.5S32, C3:C16:2S3, (C3xC6).9D8, C6.2(D4:S3), C3:1(D8.S3), (C3xD24).3C2, C3:2(C48:C2), (C3xC12).24D4, C32:5Q16:4C2, (C3xC24).9C22, C4.2(C3:D12), C2.5(C3:D24), C12.67(C3:D4), (C3xC3:C16):2C2, SmallGroup(288,196)

Series: Derived Chief Lower central Upper central

C1C3xC24 — C32:3SD32
C1C3C32C3xC6C3xC12C3xC24C3xD24 — C32:3SD32
C32C3xC6C3xC12C3xC24 — C32:3SD32
C1C2C4C8

Generators and relations for C32:3SD32
 G = < a,b,c,d | a3=b3=c16=d2=1, ab=ba, cac-1=a-1, ad=da, bc=cb, dbd=b-1, dcd=c7 >

Subgroups: 322 in 61 conjugacy classes, 22 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C32, Dic3, C12, C12, D6, C2xC6, C16, D8, Q16, C3xS3, C3xC6, C24, C24, Dic6, D12, C3xD4, SD32, C3:Dic3, C3xC12, S3xC6, C3:C16, C48, D24, Dic12, C3xD8, C3xC24, C3xD12, C32:4Q8, C48:C2, D8.S3, C3xC3:C16, C3xD24, C32:5Q16, C32:3SD32
Quotients: C1, C2, C22, S3, D4, D6, D8, D12, C3:D4, SD32, S32, D24, D4:S3, C3:D12, C48:C2, D8.S3, C3:D24, C32:3SD32

Smallest permutation representation of C32:3SD32
On 96 points
Generators in S96
(1 38 68)(2 69 39)(3 40 70)(4 71 41)(5 42 72)(6 73 43)(7 44 74)(8 75 45)(9 46 76)(10 77 47)(11 48 78)(12 79 33)(13 34 80)(14 65 35)(15 36 66)(16 67 37)(17 54 82)(18 83 55)(19 56 84)(20 85 57)(21 58 86)(22 87 59)(23 60 88)(24 89 61)(25 62 90)(26 91 63)(27 64 92)(28 93 49)(29 50 94)(30 95 51)(31 52 96)(32 81 53)
(1 68 38)(2 69 39)(3 70 40)(4 71 41)(5 72 42)(6 73 43)(7 74 44)(8 75 45)(9 76 46)(10 77 47)(11 78 48)(12 79 33)(13 80 34)(14 65 35)(15 66 36)(16 67 37)(17 54 82)(18 55 83)(19 56 84)(20 57 85)(21 58 86)(22 59 87)(23 60 88)(24 61 89)(25 62 90)(26 63 91)(27 64 92)(28 49 93)(29 50 94)(30 51 95)(31 52 96)(32 53 81)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 27)(2 18)(3 25)(4 32)(5 23)(6 30)(7 21)(8 28)(9 19)(10 26)(11 17)(12 24)(13 31)(14 22)(15 29)(16 20)(33 61)(34 52)(35 59)(36 50)(37 57)(38 64)(39 55)(40 62)(41 53)(42 60)(43 51)(44 58)(45 49)(46 56)(47 63)(48 54)(65 87)(66 94)(67 85)(68 92)(69 83)(70 90)(71 81)(72 88)(73 95)(74 86)(75 93)(76 84)(77 91)(78 82)(79 89)(80 96)

G:=sub<Sym(96)| (1,38,68)(2,69,39)(3,40,70)(4,71,41)(5,42,72)(6,73,43)(7,44,74)(8,75,45)(9,46,76)(10,77,47)(11,48,78)(12,79,33)(13,34,80)(14,65,35)(15,36,66)(16,67,37)(17,54,82)(18,83,55)(19,56,84)(20,85,57)(21,58,86)(22,87,59)(23,60,88)(24,89,61)(25,62,90)(26,91,63)(27,64,92)(28,93,49)(29,50,94)(30,95,51)(31,52,96)(32,81,53), (1,68,38)(2,69,39)(3,70,40)(4,71,41)(5,72,42)(6,73,43)(7,74,44)(8,75,45)(9,76,46)(10,77,47)(11,78,48)(12,79,33)(13,80,34)(14,65,35)(15,66,36)(16,67,37)(17,54,82)(18,55,83)(19,56,84)(20,57,85)(21,58,86)(22,59,87)(23,60,88)(24,61,89)(25,62,90)(26,63,91)(27,64,92)(28,49,93)(29,50,94)(30,51,95)(31,52,96)(32,53,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,27)(2,18)(3,25)(4,32)(5,23)(6,30)(7,21)(8,28)(9,19)(10,26)(11,17)(12,24)(13,31)(14,22)(15,29)(16,20)(33,61)(34,52)(35,59)(36,50)(37,57)(38,64)(39,55)(40,62)(41,53)(42,60)(43,51)(44,58)(45,49)(46,56)(47,63)(48,54)(65,87)(66,94)(67,85)(68,92)(69,83)(70,90)(71,81)(72,88)(73,95)(74,86)(75,93)(76,84)(77,91)(78,82)(79,89)(80,96)>;

G:=Group( (1,38,68)(2,69,39)(3,40,70)(4,71,41)(5,42,72)(6,73,43)(7,44,74)(8,75,45)(9,46,76)(10,77,47)(11,48,78)(12,79,33)(13,34,80)(14,65,35)(15,36,66)(16,67,37)(17,54,82)(18,83,55)(19,56,84)(20,85,57)(21,58,86)(22,87,59)(23,60,88)(24,89,61)(25,62,90)(26,91,63)(27,64,92)(28,93,49)(29,50,94)(30,95,51)(31,52,96)(32,81,53), (1,68,38)(2,69,39)(3,70,40)(4,71,41)(5,72,42)(6,73,43)(7,74,44)(8,75,45)(9,76,46)(10,77,47)(11,78,48)(12,79,33)(13,80,34)(14,65,35)(15,66,36)(16,67,37)(17,54,82)(18,55,83)(19,56,84)(20,57,85)(21,58,86)(22,59,87)(23,60,88)(24,61,89)(25,62,90)(26,63,91)(27,64,92)(28,49,93)(29,50,94)(30,51,95)(31,52,96)(32,53,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,27)(2,18)(3,25)(4,32)(5,23)(6,30)(7,21)(8,28)(9,19)(10,26)(11,17)(12,24)(13,31)(14,22)(15,29)(16,20)(33,61)(34,52)(35,59)(36,50)(37,57)(38,64)(39,55)(40,62)(41,53)(42,60)(43,51)(44,58)(45,49)(46,56)(47,63)(48,54)(65,87)(66,94)(67,85)(68,92)(69,83)(70,90)(71,81)(72,88)(73,95)(74,86)(75,93)(76,84)(77,91)(78,82)(79,89)(80,96) );

G=PermutationGroup([[(1,38,68),(2,69,39),(3,40,70),(4,71,41),(5,42,72),(6,73,43),(7,44,74),(8,75,45),(9,46,76),(10,77,47),(11,48,78),(12,79,33),(13,34,80),(14,65,35),(15,36,66),(16,67,37),(17,54,82),(18,83,55),(19,56,84),(20,85,57),(21,58,86),(22,87,59),(23,60,88),(24,89,61),(25,62,90),(26,91,63),(27,64,92),(28,93,49),(29,50,94),(30,95,51),(31,52,96),(32,81,53)], [(1,68,38),(2,69,39),(3,70,40),(4,71,41),(5,72,42),(6,73,43),(7,74,44),(8,75,45),(9,76,46),(10,77,47),(11,78,48),(12,79,33),(13,80,34),(14,65,35),(15,66,36),(16,67,37),(17,54,82),(18,55,83),(19,56,84),(20,57,85),(21,58,86),(22,59,87),(23,60,88),(24,61,89),(25,62,90),(26,63,91),(27,64,92),(28,49,93),(29,50,94),(30,51,95),(31,52,96),(32,53,81)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,27),(2,18),(3,25),(4,32),(5,23),(6,30),(7,21),(8,28),(9,19),(10,26),(11,17),(12,24),(13,31),(14,22),(15,29),(16,20),(33,61),(34,52),(35,59),(36,50),(37,57),(38,64),(39,55),(40,62),(41,53),(42,60),(43,51),(44,58),(45,49),(46,56),(47,63),(48,54),(65,87),(66,94),(67,85),(68,92),(69,83),(70,90),(71,81),(72,88),(73,95),(74,86),(75,93),(76,84),(77,91),(78,82),(79,89),(80,96)]])

42 conjugacy classes

class 1 2A2B3A3B3C4A4B6A6B6C6D6E8A8B12A12B12C12D12E16A16B16C16D24A24B24C24D24E···24J48A···48H
order1223334466666881212121212161616162424242424···2448···48
size112422427222424242222444666622224···46···6

42 irreducible representations

dim11112222222222444444
type++++++++++++++-+-
imageC1C2C2C2S3S3D4D6D8D12C3:D4SD32D24C48:C2S32D4:S3C3:D12D8.S3C3:D24C32:3SD32
kernelC32:3SD32C3xC3:C16C3xD24C32:5Q16C3:C16D24C3xC12C24C3xC6C12C12C32C6C3C8C6C4C3C2C1
# reps11111112222448111224

Matrix representation of C32:3SD32 in GL4(F97) generated by

1000
0100
00096
00196
,
09600
19600
0010
0001
,
56700
307200
0001
0010
,
167900
958100
0010
0001
G:=sub<GL(4,GF(97))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,96,96],[0,1,0,0,96,96,0,0,0,0,1,0,0,0,0,1],[5,30,0,0,67,72,0,0,0,0,0,1,0,0,1,0],[16,95,0,0,79,81,0,0,0,0,1,0,0,0,0,1] >;

C32:3SD32 in GAP, Magma, Sage, TeX

C_3^2\rtimes_3{\rm SD}_{32}
% in TeX

G:=Group("C3^2:3SD32");
// GroupNames label

G:=SmallGroup(288,196);
// by ID

G=gap.SmallGroup(288,196);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,85,92,590,58,675,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^16=d^2=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^7>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<